4,694 research outputs found

    Commissioning of the ATLAS Pixel Detector

    Full text link
    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008. It is currently in a commissioning phase using cosmic-ray events. We present the highlights of the past and future commissioning activities of the ATLAS pixel system.Comment: Poster at ICHEP08, Philadelphia, USA, July 2008. 3 pages, LaTeX, 2 eps figure

    Status of the ATLAS Pixel Detector

    Get PDF
    The pixel detector is a high precision silicon tracking detector located closest to the ATLAS interaction point. It provides crucial pattern recognition information and largely determines the ability for ATLAS to precisely track particle trajectories and find secondary vertices. This paper describes the design requirements, the components and the readout architecture of the pixel detector. It also describes the integration, testing and recent installation of the pixel detector inside the ATLAS detector

    Universal crossing probability in anisotropic systems

    Full text link
    Scale-invariant universal crossing probabilities are studied for critical anisotropic systems in two dimensions. For weakly anisotropic standard percolation in a rectangular-shaped system, Cardy's exact formula is generalized using a length-rescaling procedure. For strongly anisotropic systems in 1+1 dimensions, exact results are obtained for the random walk with absorbing boundary conditions, which can be considered as a linearized mean-field approximation for directed percolation. The bond and site directed percolation problem is itself studied numerically via Monte Carlo simulations on the diagonal square lattice with either free or periodic boundary conditions. A scale-invariant critical crossing probability is still obtained, which is a universal function of the effective aspect ratio r_eff=c r where r=L/t^z, z is the dynamical exponent and c is a non-universal amplitude.Comment: 7 pages, 4 figure

    Determination of the Jet Energy Scale at the Collider Detector at Fermilab

    Full text link
    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron ppˉp\bar{p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty

    Interpolating the Sherrington-Kirkpatrick replica trick

    Full text link
    The interpolation techniques have become, in the past decades, a powerful approach to lighten several properties of spin glasses within a simple mathematical framework. Intrinsically, for their construction, these schemes were naturally implemented into the cavity field technique, or its variants as the stochastic stability or the random overlap structures. However the first and most famous approach to mean field statistical mechanics with quenched disorder is the replica trick. Among the models where these methods have been used (namely, dealing with frustration and complexity), probably the best known is the Sherrington-Kirkpatrick spin glass: In this paper we are pleased to apply the interpolation scheme to the replica trick framework and test it directly to the cited paradigmatic model: interestingly this allows to obtain easily the replica-symmetric control and, synergically with the broken replica bounds, a description of the full RSB scenario, both coupled with several minor theorems. Furthermore, by treating the amount of replicas n∈(0,1]n\in(0,1] as an interpolating parameter (far from its original interpretation) this can be though of as a quenching temperature close to the one introduce in off-equilibrium approaches and, within this viewpoint, the proof of the attended commutativity of the zero replica and the infinite volume limits can be obtained.Comment: This article is dedicated to David Sherrington on the occasion of his seventieth birthda

    On the distribution of maximum value of the characteristic polynomial of GUE random matrices

    Get PDF
    Motivated by recently discovered relations between logarithmically correlated Gaussian processes and characteristic polynomials of large random N×N matrices H from the Gaussian Unitary Ensemble (GUE), we consider the problem of characterising the distribution of the global maximum of DN(x):=−log|det(xI−H)| as N→∞ and x∈(−1,1). We arrive at an explicit expression for the asymptotic probability density of the (appropriately shifted) maximum by combining the rigorous Fisher-Hartwig asymptotics due to Krasovsky \cite{K07} with the heuristic {\it freezing transition} scenario for logarithmically correlated processes. Although the general idea behind the method is the same as for the earlier considered case of the Circular Unitary Ensemble, the present GUE case poses new challenges. In particular we show how the conjectured {\it self-duality} in the freezing scenario plays the crucial role in our selection of the form of the maximum distribution. Finally, we demonstrate a good agreement of the found probability density with the results of direct numerical simulations of the maxima of DN(x)

    Stereo disparity facilitates view generalization during shape recognition for solid multipart objects

    Get PDF
    Current theories of object recognition in human vision make different predictions about whether the recognition of complex, multipart objects should be influenced by shape information about surface depth orientation and curvature derived from stereo disparity. We examined this issue in five experiments using a recognition memory paradigm in which observers (N = 134) memorized and then discriminated sets of 3D novel objects at trained and untrained viewpoints under either mono or stereo viewing conditions. In order to explore the conditions under which stereo-defined shape information contributes to object recognition we systematically varied the difficulty of view generalization by increasing the angular disparity between trained and untrained views. In one series of experiments, objects were presented from either previously trained views or untrained views rotated (15°, 30°, or 60°) along the same plane. In separate experiments we examined whether view generalization effects interacted with the vertical or horizontal plane of object rotation across 40° viewpoint changes. The results showed robust viewpoint-dependent performance costs: Observers were more efficient in recognizing learned objects from trained than from untrained views, and recognition was worse for extrapolated than for interpolated untrained views. We also found that performance was enhanced by stereo viewing but only at larger angular disparities between trained and untrained views. These findings show that object recognition is not based solely on 2D image information but that it can be facilitated by shape information derived from stereo disparity

    State of malaria diagnostic testing at clinical laboratories in the United States, 2010: a nationwide survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diagnosis of malaria can be difficult in non-endemic areas, such as the United States, and delays in diagnosis and errors in treatment occur too often.</p> <p>Methods</p> <p>A nationwide survey of laboratories in the United States and its nine dependent territories was conducted in 2010 to determine factors that may contribute to shortcomings in the diagnosis of malaria. This survey explored the availability of malaria diagnostic tests, techniques used, and reporting practices.</p> <p>Results</p> <p>The survey was completed by 201 participants. Ninety percent reported that their laboratories had at least one type of malaria diagnostic test available on-site. Nearly all of the respondents' laboratories performed thick and thin smears on-site; approximately 50% had access to molecular testing; and only 17% had access to rapid diagnostic tests on-site. Seventy-three percent reported fewer than five confirmed cases of malaria in their laboratory during the 12-month period preceding the survey. Twenty-eight percent stated that results of species identification took more than 24 hours to report. Only five of 149 respondents that performed testing 24 hours a day, 7 days a week complied with all of the Clinical and Laboratory Standards Institute (CLSI) guidelines for analysis and reporting of results.</p> <p>Conclusion</p> <p>Although malaria diagnostic testing services were available to a majority of U.S. laboratories surveyed, very few were in complete compliance with all of the CLSI guidelines for analysis and reporting of results, and most respondents reported very few cases of malaria annually. Laboratories' difficulty in adhering to the rigorous CLSI guidelines and their personnel's lack of practice and proficiency may account for delays and errors in diagnosis. It is recommended that laboratories that infrequently process samples for malaria seek opportunities for practice and proficiency training annually and take advantage of available resources to assist in species identification.</p
    • 

    corecore